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Two systems are homometric if they are indistinguishable by diffraction. A

distinction is first made between Bragg and diffuse scattering homometry, and it

is shown that in the last case coherent diffraction can allow the diffraction

diagrams to be differentiated. The study of the Rudin–Shapiro sequence,

homometric to random sequences, allows one to manipulate independently two-

point and four-point correlation functions, and to show their effect on the

statistics of speckle patterns. This study provides evidence that long-range order

in high-order correlation functions has a measurable effect on the speckle

statistics.

1. Introduction

The possibility to shape coherent X-ray beams from

synchrotron light sources (Livet, 2007) and to get naturally

coherent beams of soft (Vartanyants et al., 2011) and hard

X-rays (Gutt et al., 2012) from X-ray free-electron lasers

(XFELs) has revolutionized the way X-ray diffraction

experiments are performed and analysed. One of the most

fascinating properties of coherent diffraction is the possibility

of measuring speckle patterns (Sutton et al., 1991; Livet, 2007),

which are much more informative than the diffuse scattering

obtained by classical diffraction. Together with the develop-

ment of novel sources, phase retrieval algorithms have also

emerged, allowing reconstruction of the diffracting objects

under certain experimental conditions (Miao et al., 1999;

Rodenburg & Faulkner, 2004). However, reconstruction of a

structure is not always possible nor necessary to study the

physics of materials. For example, measuring correlation

lengths close to phase transitions (Ravy et al., 2007) or slow

dynamics with X-ray photon correlation spectroscopy (Livet,

2007; Grübel & Zontone, 2004) does not require the full

reconstruction of the system under study.

The purpose of this paper is to show that statistical analysis

of speckle patterns can yield information on orders hidden to

conventional X-ray analysis, because they are induced by

high-order correlation functions. In this respect, we are in line

with recent works showing that four-point intensity cross-

correlation of speckle patterns can uncover ‘hidden symme-

tries’ present in colloidal glasses (Wochner et al., 2009) or

magnetic systems (Su et al., 2011).

Our approach uses the concept of homometry, i.e. the

property of different systems to exhibit the same diffraction

patterns. In x2, we first separate out the scattered intensity

expression into three terms, which allows us to show that

homometry, introduced in x3, can occur at different levels. In

x4, we show that coherent diffraction can help in solving some

Bragg homometry situations. We then put the emphasis on

diffuse scattering homometry (x5), which we discuss with the

help of the Rudin–Shapiro sequence (Axel et al., 1992; Baake

& Grimm, 2009). The results are discussed in x7.

2. Coherent diffraction

Let us first give a general expression of the intensity scattered

at scattering vector q, by a one-dimensional periodic N-site

lattice decorated by two atoms A and B, of scattering factors

fA and fB, in proportions x and 1� x, respectively. General-

ization to two dimensions, three dimensions, multi-atomic

basis, displacement disorder, or disorder of the second kind

(Guinier, 1994) is straightforward. Following Guinier (1994),

the diffracted intensity is given by

IðqÞ ¼
P
n;n0

fnfn0 exp½iqðn0 � nÞ� ¼
P
m

P
n

fnfnþm expðiqmÞ: ð1Þ

The ensemble average of the product hf0fmi is then introduced:

1

Nm

X
n

fnfnþm ¼ hf0fmi þ�m; ð2Þ

where Nm is the m-dependent number of terms of the sum
P

n.

The �m term, usually neglected in textbooks, is due to finite

size fluctuations of the spatial average with respect to the

ensemble one.

Further introduction of �fm ¼ fm � hf i allows one to get

the three components of kinematic diffraction:

IBðqÞ ¼ hf i
2
P
m

Nm expðiqmÞ ð3Þ

IDDðqÞ ¼
P
m

Nmh�f0�fmi expðiqmÞ ð4Þ

ISðqÞ ¼
P
m

Nm�m expðiqmÞ: ð5Þ

The first term gives the intensity of the Bragg reflections and

the fringes due to finite size effects. For a crystal of N cells of

structure factor FðqÞ, it can be written as:
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IBðqÞ ¼ jhFðqÞij
2 sin2 qðN þ 1Þ=2

sin2 q=2
: ð6Þ

In practice, the fringes given by the sine functions are only

visible with a coherent beam illumination [for conditions of

observation and examples, see Livet (2007)].

The second term is the diffuse scattering intensity, which

only depends on the pair correlation function (CF). For

random disorder, it reduces to the well known Laue formula:

IðqÞ ¼ Nxð1� xÞðfA � fBÞ
2; ð7Þ

where random refers to the vanishing of the pair CF (i.e.

h�f0�fmi ¼ h�f0ih�fmi ¼ 0 for m 6¼ 0).

The third term gives rise to speckles. Like fringes, speckles

only exist if the incident beam is coherent enough, and if the

system does not explore too many configurations during

acquisition time T (non-ergodicity condition h�miT 6¼ 0).

Interestingly enough, working out of coherent conditions has

the effect of averaging out �m, which yields ensemble aver-

aged quantities.

3. Homometry

Homometry – etymologically same distance – is a word coined

by Patterson (1939, 1944) to describe the property of sets of

points, neither congruent nor enantiomorphic, which possess

the same pair distances (or the same difference sets) (Sene-

chal, 2008). Homometric sets thus have the same diffraction

pattern, as demonstrated by equation (1). A simple example of

homometry is given by the two sets S ¼ f0; 1; 4; 10; 12; 17g

and S0 ¼ f0; 1; 8; 11; 13; 17g (Senechal, 2008). Indeed, their

structure factors FðqÞ have the same magnitude for all q

vectors, but not the same phase. Hence, the loss of the phase

makes these sets indistinguishable by X-ray diffraction.

However, because solid-state physics deals with materials,

the above definition turns out to be too restrictive. Equation

(2) allows one to distinguish between Bragg, B-homometry,

the property of different systems to have the same Bragg

reflection intensities, and diffuse scattering, D-homometry, the

property of having the same diffuse scattering. We will reserve

the term homometry (or true homometry) for situations where

coherent diffraction speckle patterns are similar. For the sake

of consistency, let us first discuss the B-homometry.

4. Bragg homometry: a solvable case

B-homometry describes crystals with a different basis but

the same Bragg intensities (Patterson, 1939, 1944). A finer

distinction was made by Hosemann & Bagchi (1954), who

introduced pseudo-homometric structures, i.e. crystals which

are homometric only in the infinite limit. To illustrate that, let

us consider the examples of one-dimensional homometric

crystals presented in Patterson (1944), of unit-cell size equal to

8 and atomic positions given by H ¼ f0; 3; 4; 5g and H0 ¼

f0; 4; 5; 7g. Structure factors, readily calculated as

FHðqÞ ¼ 1þ 2 cos qþ expði4qÞ ð8Þ

FH0 ðqÞ ¼ 2ðcos qþ cos 2qÞ; ð9Þ

have the same amplitude squared at the Bragg positions

q ¼ hð2�=8Þ (h integer) but not out of Bragg positions.

Equation (6) shows that the fringe intensity, revealed by

coherent diffraction, gives out-of-Bragg values of jFðqÞj2

which, at least in theory, allow one to distinguish H and H0,

and solves the B-homometry issue.

This is well known and corresponds to the oversampling

requirement of the phase retrieval algorithms (Sayre, 1952;

Miao et al., 1998; van der Veen & Pfeiffer, 2004). It is clear

however that if the atomic basis is homometric itself, like e.g.

in crystals with an S or S0 basis, the problem cannot be solved,

coherence or not.

5. Diffuse scattering homometry: new aspects

Because it is related to high-order CFs and local order in

disordered systems, D-homometry is of fundamental interest.

A surprising illustration of D-homometry was discussed by

Welberry (1977) and Welberry & Butler (1994). In these

papers, the authors designed substitutionally disordered

lattices with triplet (or quadruplet) short-range-ordered

(SRO) CFs,1 but zero two-point correlations (Fig. 1a).

Diffraction diagrams of these lattices display the same Bragg

and diffuse scattering intensities (Welberry & Butler, 1994), as

expected from equations (3) and (4), clearly illustrating the

well known fact that diffuse scattering is not sensitive to high-

order CFs gk, k> 2.
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Figure 1
(Left) ð40� 40Þ lattices of +1 and �1 in equal proportion and (right)
corresponding speckle patterns in the first Brillouin zone (log scale) for
(a) a triplet SRO lattice (Welberry & Butler, 1994), (b) a random lattice.
Reciprocal nodes are in the corners.

1 In the following, we consider that an order parameter is short-range ordered
(SRO) if its associated correlation function gðnÞ vanishes at infinity and long-
range ordered (LRO) otherwise.



In order to check the homometry properties of such disor-

dered lattices, we calculated the coherent diffraction patterns

by fast Fourier transforms (FFTs) of the (zero-padded)

random and triplet-SRO lattices shown in Fig. 1. The coherent

diffraction patterns of both lattices clearly exhibit speckles

with constant average intensity but different speckles repar-

tition, which shows that coherent diffraction breaks the

D-homometry, at least qualitatively.

In this part, we will address the issue of finding quantitative

criteria to show the presence of high-order CFs in speckle

patterns. However, high-order CFs are much less intuitive

than pair CFs and also much more difficult to manipulate.

Indeed, systems with well characterized high-order CFs have

not been explored as much as two-point SRO or LRO ones

and there are very few appropriate examples in the literature.

In the following, we will show that the geometrically ordered

(GO) (Gratias et al., 2005) Rudin–Shapiro (RS) sequence

(Gratias & Axel, 1995) is well adapted to this task because it is

D-homometric to random sequences, and exhibits long-range

order in its four-point (or quadruplet) CFs.

The generic term �n can be written (Baake & Grimm, 2009)

�4nþl ¼

(
�n for l ¼ 0; 1

ð�1Þnþl�n for l ¼ 2; 3
with �0 ¼ 1: ð10Þ

This sequence has become famous (Axel et al., 1992; Höffe &

Baake, 2000; Gratias & Axel, 1995; Gratias et al., 2005)

because, though GO, it has the same diffuse scattering as that

of randomly distributed sequences [sometimes called

Bernoulli sequences (BSs) (Höffe & Baake, 2000)], given by

the 4Nxð1� xÞ Laue formula [equation (7)]. In other words,

its two-point CF g2ðnÞ ¼ �0�n is zero for n 6¼ 0 (spatial

average).

Let us now consider the coherent diffraction of RS and

Bernoulli sequences. In what follows, we present FFT

computations of sequences of length N, zero-padded up to a

value M � N to clearly see the speckles. For the RS sequence,

because x 6¼ 0:5 and depends on its length N, we have always

subtracted the average value 2x� 1 from all the terms in order

to get rid of the Bragg intensites. BSs of 1 and �1 in equal

proportion were computed with the python pseudo-random

number generator. The squared value of the FFT IðqÞ are

normalized by 4Nxð1� xÞ in order to get IðqÞ ¼ 1.

Fig. 2 shows the diffraction patterns of RS and Bernoulli

sequences in the first Brillouin zone (0< q< 2�). Inspection

of these patterns shows that, although their average value is

the same, the speckle repartition is remarkably different. In

particular, it is clear that the BS pattern exhibits many more

spikes, while the RS pattern is more homogeneous and

regular: there are no low- or high-intensity speckles and they

are more regularly spaced. To quantify this observation, we

studied the statistics of both speckle patterns by calculating

their probability density of intensity PðIÞ. It is known that for a

random media (see e.g. Dainty, 1976), the intensity distribu-

tion has a negative exponential distribution given by
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Figure 2
Speckle patterns and associated intensity variations from [ðN;MÞ ¼
ð64; 512Þ] (a) RS and (b) Bernoulli sequences. The vertical broadening of
the patterns are for visual convenience.

Figure 3
Probability densities PðIÞ of speckle patterns of ðN;MÞ ¼
ð4096; 4096� 128Þ: (a) BS (green) and RS sequence (blue), (b) sequences
obtained by Bernoullization for different p, (c) g4 SRO sequences for
different �. The line indicates the random negative exponential law.



PðIÞ ¼
1

I
exp�

I

I
; ð11Þ

which in our case reduces to PðIÞ ¼ expð�IÞ.

Fig. 3(a) shows the probability densities PðIÞRS and PðIÞBS

for the RS and Bernoulli sequences. While PðIÞBS follows quite

well the negative exponential law, as expected, this is not the

case for PðIÞRS. Though the precision of PðIÞRS depends on N,

it is well approximated by the step function PðI< 2Þ ¼ 0:5.

This statistic, which means that intensities lower than 2 occur

with the same probability, explains the homogeneous aspect of

the diffraction pattern. The quantitative difference between

both statistics clearly shows that the presence of GO, invisible

through diffuse scattering, is revealed by the statistics of the

speckle pattern, breaking the D-homometry in a quantifiable

way.

In order to better understand this behaviour, we have

quantified the degree of order of the RS by one of its quad-

ruplet CFs, namely the pair–pair CF:

g4ðnÞ ¼ �0�1�n�nþ1: ð12Þ

Indeed, we first checked that the RS triplet CF g3ðn; n0Þ ¼

�0�n�n0 is zero and does not show any structure. We found that

the quadruplet CFs are the first relevant high-order CFs to

characterize the RS order. Amongst them, we chose g4ðnÞ

because it is reminiscent of the very definition of �n given by

equation (10). Moreover, pair–pair CFs give information on

bond orientational order, which is of physical interest in two-

dimensional systems such as hexatic liquid crystals (Bruinsma

& Nelson, 1981), and has recently been investigated with

respect to coherent diffraction (Altarelli et al., 2010).

We found numerically that, at variance with the BS, g4ðnÞ

is LRO for the RS sequence (Fig. 4a). This is confirmed by

the behaviour of its FFT ĝg4ðqÞ (Fig. 4b), which exhibits

well defined peaks indexed by the basis vectors

fðhi=4:2iÞjhi 2 f�1; 1g; i 2 Ng, characteristic of limit-periodic

functions (Baake & Grimm, 2011). This behaviour has been

checked up to the N ¼ 214 RS sequences. By analogy with

two-point orders, we define �4 � ĝg4ð�=2Þ1=2=N ¼ 1=2 as the

order parameter of this sequence.

Let us now study the PRSðIÞ behaviour as a function of

disorder. We first decreased �4 while keeping g4 LRO and g2

disorder by using the ‘Bernoullization’ procedure as defined in

Baake & Grimm (2009). It consists in changing the sign of

each �n with probability 1� p, in order to build sequences

intermediate between the pure RS (p ¼ 0; 1) and Bernoulli

(p ¼ 0:5) sequences. The order parameter �4 was found

numerically to vary as �4ðpÞ ’ ð1� 2pÞ
2=2. Note that this

procedure only decreases the order parameter while keeping

the g4 LRO, the same way an anti-ferromagnetic (AF) order

parameter (for example) would decrease without breaking the

AF LRO. In this last case however, the order parameter

decreases as � ð1� 2pÞ, which shows that quadruplet order is

more sensitive to disorder than two-point order.

Typical probability density curves shown in Fig. 3(b) exhibit

a continuous evolution as a function of p. The step-function

behaviour is rapidly lost as p! 0:5, with the best sensitivity

close to the small intensity values PðI ¼ 0Þ. Fig. 5 shows the

behaviour of PðI ¼ 0Þ as a function of p, computed from an

N ¼ 1024 sequence, together with the 1� 2�4ðpÞ
2 curve. Most

importantly, it appears that PðI ¼ 0Þ directly follows the

quadruplet order parameter squared and is consequently a

clear signature of the quadruplet order. This demonstrates that

high-order CFs can be shown by X-ray coherent diffraction.

However, because the Bernoullization procedure keeps the

quadruplet LRO, this remarkable result should be tested

against SRO. The effect of g4 SRO on the speckle pattern was

studied by shifting the sequence by two lattice periods at

certain points, randomly selected with probability 1� p. This

ensures we achieve g4 SRO, clearly seen by the broadening of

the ĝg4ð�=2Þ peak, while keeping the g2ðnÞ correlation to zero.

Fig. 3(c) shows the results for different average distances

between faults �. It appears that PðIÞBS is almost unaffected by

the quadruplet SRO for � <N=40. This shows that the extent

of the quadruplet order has a much larger effect on the

speckle statistics than the Bernoullization procedure. In other

words, while decreasing the RS order gives a sizeable and

measurable effect on the density probability of the speckle

pattern, breaking LRO rapidly destroys the speckle statistics
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Figure 5
PðI ¼ 0Þ as a function of the probability p, calculated for an N ¼ 1024
lattice. The line corresponds to the 1� 2�4ðpÞ

2 curve, as explained in the
text.

Figure 4
(a) Computed g4ðnÞ using periodic boundary conditions for N ¼ 256 RS
sequence (blue) and a Bernoulli sequence (green). (b) Magnitude of RS
ĝg4ðqÞ as a function of h ¼ q=2�.



of the ordered state, making evidence of high-order CFs more

difficult to obtain.

6. True homometry

Because it is related to the difficult issue of unicity in inverse

problems, true homometry is beyond the scope of this paper.

For the sake of completeness however, let us mention the

discussion given in Rodenburg (1989) and the fact that using

ptychography (Rodenburg & Faulkner, 2004), in which

diffraction patterns are obtained by shifting illumination on

the sample, can solve difficult problems of phase retrieval

(Guizar-Sicairos et al., 2010), including true homometry.

7. Discussion

It might seem pointless to discuss the problem of homometry

while phase retrieval algorithms and ptychography can

provide the full structural information, and thus high-order

correlation functions. However, the full measurement of

three-dimensional speckle patterns is time consuming and in

many situations it is not possible to get the data. For example

in ‘one-shot’ XFEL experiments, the speckle pattern obtained

will be a two-dimensional cut of the reciprocal space,

which prevents full three-dimensional reconstruction. Simi-

larly, it will be quite difficult to get three-dimensional patterns

of rapidly evolving systems such as liquids, liquid crystals

or colloids. Methods of speckle analyses on such quickly

measured patterns are thus needed to get novel information

on the materials.

As stressed in Schneider et al. (2010), real cases of true

B-homometry are rare. In contrast, because disorder is

involved, D-homometry is very common especially when

systems are large. Moreover it is related to high-order CFs

which are hardly accessible to experiments (Wochner et al.,

2009; Su et al., 2011; Treacy et al., 2005).2 The purpose of this

numerical study was to demonstrate that high-order CFs have

a measurable effect on the speckle statistics obtained by

coherent diffraction. To this end, we have first shown that the

RS sequence, which is D-homometric to random sequences, is

long-range ordered in its quadruplet CFs, and we have defined

an associated order parameter. By disordering the sequence

while keeping the pair CF constant, the high-order CFs have

been shown to give rise to measurable effects on speckle

pattern statistics, as shown by the behaviour of the probability

density of intensity PðIÞ (Figs. 3a, 3b). This conclusion is

reinforced by the curve displayed in Fig. 5 where PðI ¼ 0Þ is

shown to follow the quadruplet order parameter squared.

Finally, breaking down LRO by adding phase defects also

breaks the statistics for a few percentage of defects, as shown

in Fig. 3(c). Qualitatively, the ‘spikiness’ of speckle patterns is

quickly reinforced by the introduction of defects, which makes

deviation to the negative exponential curve difficult to

observe. The conclusion of this study is that LRO high-order

CFs have indeed a quantifiable effect on PðIÞ, but that SRO

high-order CFs are more difficult to show.

Using this technique to analyse speckle patterns can be

difficult for experimental reasons. First, the presence of two-

point correlations in all real systems (the classical SRO) could

obviously mask the speckle distribution analysis. In this

respect, we have checked that, at least for SRO lattices with no

high-order correlations, dividing the speckle pattern intensity

by its associated diffuse scattering one IDD (by smoothing,

averaging or fitting) makes PðI=IDDÞ follow the normal

decreasing exponential law. This can help in disentangling

high-order effects from two-point ones.

Another issue might be the partial coherence of the beam,

which reduces the speckle contrast and makes the previous

analyses difficult. This could be overcome by the analysis of

the speckle maximum intensities, which exhibit similar statis-

tical properties.

Coming back to the two-dimensional disordered lattices

presented in x5, we checked that the probability density of the

speckle patterns shown in Fig. 1(b) does not present sizeable

deviation from the negative exponential distribution. This is

consistent with the previous conclusions that high-order CFs

must present enough LRO to have a measurable effect on PðIÞ

(the average size of the white triangles, characteristic of the

triplet order, is only a few lattice constants). However, the

simple fact that the lattices of Fig. 1 can be reconstructed with

minimum information with phase retrieval algorithms shows

that high-order CFs are hidden in the speckle repartition. This

remark obviously calls for a theoretical effort to find the

relevant parameters (SRO correlation lengths, CF order etc.)

controlling the speckle statistics in any system. Such an effort

could be supported by more sophisticated numerical analyses

such as the use of second-order (or higher) probability func-

tions (Dainty, 1976). In this respect, algorithmic approaches

using basic constraints could be an alternative approach.

We hope this work will provide an impetus for theoretical

and experimental studies on the relation between high-order

CFs and speckle statistics.

We thank F. Berenguer, D. Gratias, D. Le Bolloc’h and F.

Livet for useful discussions.
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